HELLMUT BREDERECK, ADOLF WAGNER, RUDOLF BLASCHKE, GEORG DEMETRIADES UND KARL-GEORG KOTTENHAHN

Halogenidkatalyse bei Autoxydationsreaktionen

Aus dem Institut für Organische Chemie und Organisch-Chemische Technologie der Technischen Hochschule Stuttgart (Eingegangen am 27. Mai 1959)

Es wird an mehreren Beispielen gezeigt, daß Halogenidionen die Autoxydation kaţalysieren.

In früheren Mitteilungen über "Polymerisationen und Polymerisationskatalysatoren" haben wir gezeigt, daß die polymerisationsauslösende Wirkung der α -Hydroxy- und α -Aminosulfone¹) durch Chlorid- und Bromidionen wesentlich beschleunigt wird. Ebenso können α -substituierte Thioäther²) und Mercaptane bzw. Thiophenole³) nur in Gegenwart von Halogenidionen (Cl^{Θ} und Br^{Θ}) und Sauerstoff die Polymerisation von Vinylverbindungen auslösen. Bei *p*-Toluolsulfinsäure, die sowohl unter Sauerstoff als auch unter reinstem Stickstoff die Polymerisation von Methacrylsäure-methylester auszulösen verm³g⁴), wirken Chloridionen nur in Gegenwart von Sauerstoff, während sie unter Stickstoff ohne Einfluß auf die Polymerisation sind⁴). Auf Grund dieser Befunde nehmen wir an, daß die Chlorid- und Bromidionen in die Autoxydationsreaktionen der Schwefelverbindungen eingreifen und auf diese Weise die Polymerisationsauslösung bewirken.

Die katalytische Wirkung der Chlorid- und Bromidionen bei Oxydationsreaktionen haben wir bereits bei der oxydativen Anlagerung von Mercaptanen und Thiophenolen an Olefine zu β -Hydroxysulfoxyden beobachtet⁵⁾. Wir haben nunmehr den Einfluß von Halogenidionen auf die Autoxydation der *p*-Toluolsulfinsäure in verschiedenen Lösungsmitteln untersucht. Bei einigen Versuchen wurde gleichzeitig Kupferacetylacetonat zugesetzt, dessen polymerisationsbeschleunigende Wirkung wir bereits früher festgestellt hatten¹⁾. Die Versuche wurden in einer Schüttelapparatur unter trockenem Sauerstoff bei 40° durchgeführt.

In den Abbildungen 1-3 geben wir die Sauerstoffaufnahme (in Mol O₂/Mol Toluolsulfinsäure) in Abhängigkeit von der Zeit für die katalysierte und nichtkatalysierte Reaktion wieder. Eine Sauerstoffaufnahme über 0.500 Mol O₂/Mol *p*-Toluolsulfinsäure zeigt eine Überoxydation an, d. h., neben der Oxydation der Sulfinsäure erfolgt noch eine Oxydation des Lösungsmittels. Die verwendeten Lösungsmittel – Methacryl-

¹⁾ H. BREDERECK, E. BÄDER, W. NÜBLING und A. WOHNHAS, Makromolekulare Chem. 18/19, 431 [1956].

²⁾ H. BREDERECK, F. ROCHLITZ, A. WAGNER und M. I. ILIOPULOS, Makromolekulare Chem. 29, 117 [1959].

³⁾ H. BREDERECK, A. WAGNER, F. ROCHLITZ, M. I. ILIOPULOS, A. KOTTENHAHN und H.-G. WULZ, Makromolekulare Chem. **29**, 131 [1959].

⁴⁾ G. SCHÖLLMANN, Dissertat. Techn. Hochschule Stuttgart 1957.

⁵⁾ H. BREDERECK, A. WAGNER und A. KOTTENHAHN, Angew. Chem. 70, 73 [1958].

säure-methylester, Crotonsäure-methylester und Acetonitril – nehmen unter den angewandten Reaktionsbedingungen in Abwesenheit von p-Toluolsulfinsäure auch bei Gegenwart von Chloridionen und Kupferacetylacetonat keine nennenswerten Mengen Sauerstoff auf; demzufolge müssen Reaktionen, die zur Überoxydation führen, primär von der Sulfinsäureoxydation ausgelöst werden.

Besonders kraß ist diese Überoxydation bei dem in Anlehnung an die Polymerisation als Lösungsmittel verwendeten Methacrylsäure-methylester. Schon bei der unkatalysierten Reaktion (Abbild. 1, Kurve 1) wird nahezu das Doppelte der theo-

- Kurve 1: 3.19 mMol p-Toluolsulfinsäure
- Kurve 2: 3.17 mMol p-Toluolsulfinsäure $+ \sim 30$ mg Kupferacetylacetonat
- Kurve 3: 3.20 mMol p-Toluolsulfinsäure $+ \sim$ 300 mg Dibutylamin-hydrochlorid
- Kurve 4: 3.08 mMol p-Toluolsulfinsäure + ~ 300 mg Dibutylamin-hydrochlorid + 30 mg Kupferacetylacetonat
 - Kurve 5: 3.09 mMol p-Toluolsulfinsäure + eine Spatelspitze Natriumchlorid Der O₂-Verbrauch bezieht sich auf 1 Mol p-Toluolsulfinsäure

retischen Menge Sauerstoff aufgenommen. Durch Zugabe von Dibutylamin-hydrochlorid wird die Aufnahme von Sauerstoff wesentlich beschleunigt (Kurve 3), gleichzeitig tritt eine noch stärkere Überoxydation auf. Gibt man zusätzlich noch Cu^{2⊕} in Form von Kupferacetylacetanot hinzu, so wird die Sauerstoffaufnahme nochmals wesentlich beschleunigt (Kurve 4), doch tritt hier die Überoxydation nicht stärker in Erscheinung als bei der unkatalysierten oder durch Kupferacetylacetonat allein katalysierten Oxydation (Kurve 2). Daß bei dieser Beschleunigung nur äußerst geringe Mengen Chloridionen erforderlich sind, zeigt die Kurve 5, die die Sauerstoffaufnahme in Gegenwart von Natriumchlorid wiedergibt.

Auch beim Crotonsäure-methylester (Abbild. 2) finden wir die Beschleunigung durch Chloridionen (Kurve 2). Der Effekt ist am größten, wenn Schwermetall- und Halogenidionen zusammenwirken (Kurve 4). Wie beim Methacrylsäure-methylester, so findet auch hier eine starke Überoxydation statt.

Abbild. 2. Autoxydation der *p*-Toluolsulfinsäure in 10 ccm Crotonsäure-methylester bei 40° Kurve 1: 3.08 mMol *p*-Toluolsulfinsäure

- Kurve 2: 3.05 mMol p-Toluolsulfinsäure + 300 mg Dibutylamin-hydrochlorid
- Kurve 3: 3.09 mMol *p*-Toluolsulfinsäure + 20 mg Kupferacetylacetonat (in d. Abbild. ohne Nr.) Kurve 4: 3.02 mMol *p*-Toluolsulfinsäure + 300 mg Dibutylamin-hydrochlorid + 20 mg Kupferacetylacetonat

Der O₂-Verbrauch bezieht sich auf 1 Mol p-Toluolsulfinsäure

Bei der Autoxydation in Acetonitril (Abbild. 3) tritt keine Überoxydation auf. Die *p*-Toluolsulfinsäure wird ohne Nebenreaktionen zur *p*-Toluolsulfonsäure oxydiert.

Jedoch erfolgt auch hier durch Chloridionen eine wesentliche Beschleunigung der Autoxydation (Kurve 2), die durch Zugabe von Kupferacetylacetonat noch erheblich verstärkt wird (Kurve 3).

Auch andere Autoxydationsreaktionen werden durch Halogenidionen beeinflußt. Wir haben bereits in einer vorläufigen Mitteilung⁶⁾ darüber berichtet, daß außer der

⁶⁾ H. BREDERECK, A. WAGNER, K.-G. KOTTENHAHN, A. KOTTENHAHN und R. BLASCHKE, Angew. Chem. 70, 503 [1958].

Autoxydation von Sulfinsäure auch die von Tetralin und Cyclohexen durch Dibutylamin-hydrochlorid oder -hydrobromid stark beschleunigt wird, daß dagegen bei Anwesenheit von Dibutylamin-hydrojodid keine Sauerstoffaufnahme erfolgt.

Die Halogenid-Katalyse haben wir jetzt näher bei der Autoxydation von reinem *Tetralin* untersucht. Die Autoxydation von Tetralin und ihre Katalyse durch Schwermetalle ist bereits beschrieben⁷⁻¹⁰). Unsere Untersuchungen wurden mit hochgereinigtem Tetralin in einer Schüttelapparatur unter trockenem Sauerstoff bei 760 Torr und 80° durchgeführt.

Abbild. 4 zeigt den Verlauf der Autoxydation in Gegenwart von Dibutylaminhydrochlorid, -hydrobromid, -perchlorat, Tetramethylammoniumchlorid, -bromid und -jodid. Diese Salze sind in Tetralin schwerlöslich und gehen erst mit zunehmender Sauerstoffaufnahme in Lösung.

Während mit Dibutylamin-hydrojodid keine Katalyse der Sauerstoffaufnahme von reinem Tetralin erfolgt⁶), konnten wir jetzt, beim Arbeiten im Dunkeln und nach Voroxydation der Tetralinlösung durch Schütteln unter Sauerstoff, auch mit Dibutylamin-hydrojodid die Geschwindigkeit der Sauerstoffaufnahme steigern¹¹).

Im Gegensatz zur Autoxydation der *p*-Toluolsulfinsäure beschleunigen Natriumchlorid, Kaliumchlorid und -bromid die Sauerstoffaufnahme des Tetralins praktisch

- ⁹⁾ A. ROBERTSON und W. A. WATERS, J. chem. Soc. [London] **1948**, 1574, 1578, 1585; A. ROBERTSON und W. A. WATERS, Trans. Faraday Soc. **42**, 201 [1946].
 - ¹⁰⁾ C. H. BAMFORD und M. J. S. DEWAR, Proc. Roy. Soc. [London], Ser. A 198, 252 [1949].
 ¹¹⁾ R. BLASCHKE, Diplomarbeit Techn. Hochschule Stuttgart 1959.

⁷⁾ P. GEORGE, Trans. Faraday Soc. 42, 210 [1946].

⁸⁾ P. GEORGE und A. ROBERTSON, Trans. Faraday Soc. 42, 217 [1946].

nicht, Kaliumjodid jedoch zeigt — überraschenderweise — eine Beschleunigung (Abbild. 5); bei gleichzeitiger Zugabe von Tetralinhydroperoxyd wird die Induktionsperiode verkürzt (Kurven 2 und 3).

Von den quartären Ammoniumverbindungen untersuchten wir Triäthylammonioessigsäure-äthylester-chlorid, Triäthyl-benzyl-ammoniumchlorid, Triallylammoniumchlorid und Octadecyl-dimethyl-benzyl-ammoniumchlorid (Abbild. 6). Erstere übertrifft in der katalytischen Wirkung noch Dibutylamin-hydrochlorid.

Tetramethylammoniumchlorid und -bromid beschleunigen die Sauerstoffaufnahme des Tetralins im Vergleich zu den entsprechenden Dibutylaminsalzen wesentlich weniger. Die durch Tetramethylammoniumjodid katalysierte Autoxydation entspricht der durch Kaliumjodid katalysierten Reaktion, ihre Induktionsperiode ist jedoch etwas länger.

Durch vergleichende Untersuchungen stellten wir fest, daß das Optimum der Beschleunigung bei ungefähr 0.1% Halogenidzusatz (bezogen auf Tetralin) liegt. Bei der durch Chlorid katalysierten Autoxydation konnten wir nachweisen, daß während der Autoxydation Chlor verbraucht und in das Tetralinmolekül eingebaut wird.

zugesetzte mg Cl	nach Autoxydation gef. Cl ^o (%)	nach Verseifung gef. Cl [⊖] (%)
10.72	49.0	
10.71	50.0	
10.88	56.8	91.0
10.64	59.0	91.5

Verteilung des Chlors nach Autoxydation von 10 ccm Tetralin, wobei 560 ccm O_2 (red.) aufgenommen wurden

Dazu bestimmten wir nach 3 stündiger Reaktion in der einen Hälfte eines Oxydationsansatzes titrimetrisch das noch vorhandene Chlorid und in der anderen Hälfte ebenfalls titrimetrisch die Chloridmenge nach 4stündiger Verseifung mit methanol. Kalilauge. Dabei zeigte sich, daß ungefähr die Hälfte des Chlorids verbraucht und zum wesentlichen Teil in den aliphatischen Teil des Tetralins bzw. seines Autoxydationsproduktes eingebaut wird (Tab.).

An Ölsäure und Leinöl konnten wir zeigen, daß die Sauerstoffaufnahme durch verschiedene Halogenide und Pseudohalogenide ebenfalls katalysiert wird und mit höherer Temperatur zunimmt (Abbild. 7–10). Von den Pseudohalogeniden wirkt Kaliumrhodanid katalytisch, Kaliumcyanid jedoch nur wenig. Bei Temperaturen über 90°

tritt die katalytische Wirkung immer mehr zurück und die Menge des aufgenommenen Sauerstoffs ist zum Teil geringer als bei der unkatalysierten Reaktion. Auf diese Erscheinungen werden wir später bei der theoretischen Betrachtung der Halogenidkatalyse eingehen.

BESCHREIBUNG DER VERSUCHE

Apparatur (Abbild. 11): Das Reaktionskölbchen, durch ein kurzes Stück PVC-Schlauch mit der Meßbürette verbunden, wird durch einen Exzenter intensiv geschüttelt. Durch die Form des Kölbchens wird erreicht, daß die Reaktionslösung ständig "aufschäumt" und

Abbild. 11. Apparatur zur Bestimmung der Sauerstoffaufnahme autoxydabler Stoffe A Meßbürette mit Thermostatmantel, B Hg-Niveaugefäß, C Elektromotor mit Getriebe und Gewindestange, D Hg-Manometer, E Schaltrelais, F Relaisanschlüsse des Motors, G Stopschalter für den Motor, H Reaktionskölbchen mit Schüttelvorrichtung, I Thermostat

dadurch die Diffusionsgeschwindigkeit des in die Lösung nachzuliefernden Sauerstoffs groß wird gegenüber der Oxydationsgeschwindigkeit. Das Reaktionsgefäß taucht in einen Thermostaten, durch dessen Flüssigkeits-Umlauf auch die Bürette auf konstanter Temperatur gehalten wird. Über das Quecksilbermanometer wird ein Motor gesteuert, der über eine Gewindestange das Quecksilber-Ausgleichsgefäß in vertikaler Richtung bewegt. Dadurch wird im Reaktionsraum Druckkonstanz (etwa 6 mm Hg) erreicht. Das Ablesen der Bürette hat kurz vor oder sofort nach dem Schalten des Manometers zu erfolgen (jedoch in einer Meßreihe immer in gleicher Weise), damit die Bedingungen bei jeder Ablesung vergleichbar sind und die entsprechenden Korrekturen für den Druck vorgenommen werden können.

Es wurde 99-proz. Sauerstoff verwendet, der über festem Kaliumhydroxyd getrocknet und vor dem Versuch bei der Versuchstemperatur durch das verwendete reine Lösungsmittel geleitet wurde. Vor jedem Versuch wurde die Apparatur intensiv mit Sauerstoff durchgespült.

Die in den Abbildungen angegebenen ccm des aufgenommenen Sauerstoffs beziehen sich auf Normalbedingungen (760 Torr, 273.16° K).

p-Toluolsulfinsäure: Durch reduzierende Verseifung von p-Toluolsulfochlorid mit Natriumcarbonat und Natriumsulfit nach C. W. BLOMSTRAND¹²⁾ und H. ERDMANN und C. SÜVERN¹³⁾ wurde das beständige Natriumsalz der Sulfinsäure dargestellt. Die Sulfinsäure wurde aus dem Natriumsalz mit Schwefelsäure p.a. freigemacht, mindestens dreimal aus viel Wasser umkristallisiert, i. Vak. über Silicagel getrocknet und im Dunkeln im Exsikkator aufbewahrt. Sulfinsäure, die älter als vier Tage war, wurde für weitere Versuche erst nach nochmaligem Umkristallisieren und Trocknen verwendet.

Methacrylsäure-methylester: Das technische, mit Hydrochinon stabilisierte Produkt wurde nach G. V. SCHULZ und F. BLASCHKE¹⁴⁾ durch mehrmaliges Schütteln mit 25-proz. Natronlauge, anschließendes Waschen mit Wasser und Trocknen über Natriumsulfat gereinigt und dreimal i. Vak. über eine 70 cm lange Dorrkolonne fraktioniert destilliert.

Crotonsäure-methylester wurde nach T. PURDIE und W. MARSHALL¹⁵⁾ durch Kochen einer methanol. Crotonsäurelösung mit Schwefelsäure dargestellt. Um evtl. noch vorhandene Chloridionen zu entfernen, wurde der Crotonsäure-methylester einige Stunden über Silbercarbonat gekocht, abdestilliert und zweimal über eine 70 cm lange Dornkolonne fraktioniert destilliert.

Acetonitril wurde getrocknet und dreimal über eine 70 cm lange Dornkolonne fraktioniert destilliert.

Tetralin wurde dreimal im Wasserstrahlvakuum unter hochgereinigtem Stickstoff destilliert.

Reine Ölsäure (Merck) wurde i. Vak. unter hochgereinigtem Stickstoff destilliert und unter Stickstoff auf bewahrt.

Leinöl wurde in Form der DAB6-Qualität verwendet.

Chloreinbau in Tetralin: 10 ccm Tetralin wurden unter Zusatz von ca. 10 mg Chloridionen unter trockenem Sauerstoff bei 760 mm Hg und 80° 3 Stdn. autoxydiert. Der Schüttelversuch wurde nach Aufnahme von 560 ccm Sauerstoff abgebrochen. Nach Abkühlen der Probe im geschlossenen Gefäß wurden 5 ccm der Lösung abpipettiert und der Chloridionen-Gehalt durch potentiometrische Titration mit $n/_{100}$ AgNO₃ in 100 ccm mit 1 ccm Eisessig angesäuertem Methanol bestimmt. Die andere Hälfte des Ansatzes wurde mit 5 ccm methanol. Kalilauge (2 g Kaliumhydroxyd in 100 ccm Methanol) 4 Stdn. unter Rückfluß erhitzt und der Chloridionengehalt wie vorstehend durch potentiometrische Titration ermittelt.

¹⁴⁾ Z. physik. Chem., Abt. B 50, 305 [1941].

¹⁵⁾ J. chem. Soc. [London] **59**, 476 [1891].

2636

¹²⁾ Ber. dtsch. chem. Ges. 3, 965 [1870].

¹³⁾ Liebigs Ann. Chem. 275, 305 [1893].